Existence Theory for Perturbed Nonlinear Boundary Value Problems with Integral Boundary Conditions
نویسندگان
چکیده
منابع مشابه
Existence Theory for Perturbed Nonlinear Boundary Value Problems with Integral Boundary Conditions
In this paper, the existence of solutions and extremal solutions for a second order perturbed nonlinear boundary value problem with integral boundary conditions is proved under the mixed generalized Lipschitz and Carathéodory conditions. 2000 Mathematics Subject Classification: 34A60, 34B15.
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملExistence Results for Nonlinear Boundary-value Problems with Integral Boundary Conditions
In this paper, we investigate the existence of solutions for a second order nonlinear boundary-value problem with integral boundary conditions. By using suitable fixed point theorems, we study the cases when the right hand side has convex and nonconvex values.
متن کاملExistence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions
متن کامل
EXISTENCE RESULTS FOR NONLINEAR IMPULSIVE qk-INTEGRAL BOUNDARY VALUE PROBLEMS
u(T ) = ∑m i=0 ∫ ti+1 ti g(s, u(s)) dqis, where Dqk are qk-derivatives (k = 0, 1, 2, . . . ,m), f, g ∈ C(J ×R, R), Ik ∈ C(R,R), J = [0, T ](T > 0), 0 = t0 < t1 < · · · < tk < · · · < tm < tm+1 = T , J ′ = J\{t1, t2, . . . , tm}, and ∆u(tk) = u(t + k ) − u(t − k ), u(t + k ) and u(t − k ) denote the right and the left limits of u(t) at t = tk (k = 1, 2, . . . ,m) respectively. The study of q-dif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: gmj
سال: 2006
ISSN: 1572-9176,1072-947X
DOI: 10.1515/gmj.2006.215